日本午夜理伦三级 人人澡超碰碰中文字菷 久久久亚洲欧洲日产国码AV 绿巨人APP 被同事灌醉的日本电影 妇乱子伦交小说 最近最新中文字幕视频 年轻的搜子34 粗大紫红猛烈的贯穿h 阿v天堂2017在线播放 新欧美三级经典在线观看 2019中文字幕视频 人妻夜夜添夜夜无码AN 农村熟妇乱子伦拍拍视频 国产亚洲精品视频在钱一首页 久久丁香婷深爱五月天网 成年片黄色日本大片网站视频 免费人成视频XVIDEOS入口 国产av无码日韩av无码网站 噜啊噜色噜在线视频 德国极品少妇videossexhd 国产一区二区三区水蜜桃 全黄激性性视频 人妻少妇久久久久久97人妻 欧美XXXX精品另类 欧美最爽乱婬视频免费挤奶 高H喷水荡肉自慰爽文NP 曰批视频免费40分钟 ktv和闺蜜被强奷很舒服 日本一级淫色人妻 日韩精品一区二区中文最新章节 久久中文字幕无码A片不卡 香港三级强奷在线观看 亚洲日本乱理播放器 色综合天天99综合网观看 电影高清完整版在线观看 janpanese日本护士中文版 欧美日韩国产第一区 人妻厨房出轨上司HD院线波多野 欧美老熟妇乱子伦XX复古 精品中文亚洲字幕 成年视频大全免费 久久www免费人成一看片 亚洲AV无码日韩AV无码网站 CHINASPEAKING老大太 亚洲欧美日韩精品久久 看片神器app污免费视频大全 强奷绝色年轻女教师 小草青青在线最新手机免费观看 免费人妻无码不卡中文字幕18禁

Researchers Capture X-Ray Images With Unprecedented Speed and Resolution

Researchers capture X-ray images with unprecedented speed and resolution

Researchers developed a high-resolution x-ray imaging technique based on ghost imaging that can capture the motion of rapidly moving objects. They used it to create a movie of a blade rotating at 100,000 frames per second. Credit: Sharon Shwartz, Bar-Ilan University

Researchers have demonstrated a new high-resolution X-ray imaging technique that can capture the motion of rapidly moving objects and quickly changing dynamics. The new method could be used for non-destructive imaging of moving mechanical components and to capture biological processes not previously available with medical X-ray imaging.

"The technique we demonstrated can be used with any X-ray source, plus it is low cost, simple and robust," said research team leader Sharon Shwartz from Bar-Ilan University in Israel. "Thus, it opens up the possibility of using X-rays to measure fast dynamics outside the lab." 

In The Optical Society (OSA) journal Optics Express, the researchers describe their new X-ray imaging approach, which uses a non-traditional imaging method known as ghost imaging to achieve fast imaging speeds with high spatial resolution. They demonstrate the technique by creating an X-ray movie of a blade rotating at 100,000 frames per second. 

"Medical imaging systems based on this technique could offer a new diagnostic tool for physicians," said Shwartz. "Our approach could, for example, be used to acquire high-resolution movies of the heart while greatly reducing the radiation dose for patients." 

Seeing through surfaces 

X-rays are useful for imaging because of their unique capability to penetrate surfaces that are opaque to visible wavelengths. Traditional X-ray imaging typically uses a pixelated camera with each pixel measuring the intensity level of the X-ray beam at a specific position. 

Capturing higher resolution X-ray images requires more pixels, which, in turn, creates huge amounts of data that take time to transfer. This creates a trade-off between imaging speed and spatial resolution that makes it impossible to capture high-speed events with high resolution. Although very specialized techniques involving extremely powerful X-rays can overcome this trade-off, these X-ray sources are only available at large synchrotrons found at a few facilities around the world. 

In the new work, the researchers turned to ghost imaging because it uses single-pixel detectors that can improve the imaging speed. Ghost imaging works by correlating two beams—in this case, X-ray beams—that do not individually carry any meaningful information about the object. One beam encodes a random pattern that acts as a reference and never directly probes the sample. The other beam passes through the sample. Because very little X-ray power comes into contact with the object being imaged, ghost imaging can also help reduce X-ray exposure when used for medical imaging. 

"Although single-pixel detectors can be much faster than pixelated detectors, they do not provide the spatial resolution necessary for image reconstruction," said Shwartz. "We used ghost imaging to overcome this problem and showed that we can image fast dynamics with spatial resolution comparable to or even better than the state-of-the-art X-ray pixelated detectors." 

A simple solution 

To create the reference beam needed for ghost imaging, the researchers used standard sandpaper mounted on motorized stages to create a random pattern that was recorded with a high-resolution, slow framerate pixelated X-ray camera. As the stage was moved to each position, the X-ray beam hit a different area of the sandpaper, creating random X-ray transmissions, or intensity fluctuations. 

They then removed the pixelated camera from the X-ray beam and inserted the object to be imaged and a single-pixel detector. They moved the motorized stages to irradiate the object with the intensity fluctuation patterns introduced at the various positions of the sandpaper and then measured the total intensity after the beam hit the object by using the single-pixel detector. 

To use this approach to image a fast-moving blade, the researchers synchronized the measurements with the blade's movement. A final image could then be reconstructed by correlating the reference pattern with the intensity measured by the single-pixel detector for each position of the blade. 

The researchers created a movie of the moving blade by performing image reconstruction frame-by-frame to capture the blade at different positions. The resulting movie clearly shows the motion with a spatial resolution of about 40 microns—nearly an order of magnitude better than the resolution of currently available medical imaging systems. 

The researchers are continuing to make improvements to the overall system as well as the image reconstruction algorithm to improve resolution and shorten measurement times. 

(From: https://phys.org/news/2020-08-capture-x-ray-images-unprecedented-resolution.html)
  Copyright © The Institute of Optics And Electronics, The chinese Academy of Sciences
Address: Box 350, Shuangliu, Chengdu, Sichuan, China
Email:dangban@ioe.ac.cn Post Code: 610 209 備案號:蜀ICP備05022581號
四虎精品亚洲无码